Development and Validation of the Satisfaction With Appearance Scale: Assessing Body Image Among Burn-Injured Patients

John W. Lawrence and Leslie J. Heinberg
Johns Hopkins University School of Medicine

Robert Roca
Sheppard Pratt Health System

Andrew Munster, Robert Spence, and James A. Fauerbach
Johns Hopkins University School of Medicine

The Satisfaction With Appearance Scale (SWAP) is a 14-item questionnaire, assessing both the subjective appraisal and social-behavioral components of body image among burn survivors. Burn survivors requiring hospitalization (n = 165) completed a packet of psychometric instruments, including the SWAP at 1-week postdischarge. The SWAP demonstrated a high level of internal consistency (Cronbach's alpha, $\alpha = .87$; the mean interitem correlation, $r_{it} = .32$, the mean item-total correlation, $r_{it} = .53$). Eighty-four participants were retested approximately 2 months after the initial assessment to evaluate test-retest reliability ($r_{rt} = .59$). A principal-components analysis with a varimax rotation yielded 4 easily interpretable factors accounting for 66% of the total variance. The correlations of the SWAP total score with other selected psychometric measures provided evidence for both convergent and discriminant validity. This initial evaluation of the SWAP suggests that it is both a reliable and valid measure of body image for a burn-injured population.

Enduring a severe burn presents a burn survivor with numerous challenges, not the least of which is adjusting to scarring and related changes in his or her appearance (Patterson et al., 1993). To date, most research on the psychological effect of scarring and disfigurement following a severe burn injury has focused on the relationship between burn characteristics (e.g., size and location of burn), demographic characteristics of the burn survivors (e.g., sex and age), and subsequent emotional distress. For example, a number of researchers have emphasized the importance of the distinction between hidden (e.g., back, stomach) or visible (e.g., face) scars. Abdullah et al. (1994) found that children with visible scars from burn injuries reported more body-image disparagement than did children with hidden scars. Similarly, in adult populations, visible scarring has been shown to relate to decreased interaction with nonfamily members (Browne et al., 1985) and to increased withdrawal from activities that emphasize physical appearance (Andreasen & Norris, 1972). Other studies have suggested that alterations in physical appearance predict poorer sexual satisfaction (Tudahl, Blades, & Munster, 1987), and that disfigurement is related to poorer self-esteem in women but not in men (Bowden, Feller, Tholen, Davidson, & James, 1980).

The importance of burn-injury characteristics as the primary predictors of postburn adjustment has been called into question by a number of studies. Among adolescent and young adult burn victims, perceived self-support and male gender significantly predicted better self-esteem and more positive body image (Orr, Reznikoff, & Smith, 1989). Somewhat surprisingly, variables such as location of scarring (facial vs. sexual) and the total body surface area (TBASA; a measure of injury severity) did not account for a significant proportion of variance in measures of body-image satisfaction, self-esteem, depression, and activity in this adolescent-young adult sample. A similar pattern of findings was demonstrated by this research group. Psychological factors such as postburn adjustment predicted who would receive reconstructive surgery but site of injury and TBASA did not in a sample being evaluated at a reconstruction surgery clinic (Heinberg, Fauerbach, Spence, & Hacker, 1997).

Thus, severity of injury and site of disfigurement are unable to account for the wide variability in postinjury adjustment. Perhaps subjective assessment of scarring and deformity is an important factor.

The studies cited above call into question the importance of objective indexes of burn characteristics in predicting adjustment to scarring. These findings are consistent with the literature on body-image dysphoria (BID) in other populations (Heinberg, 1996), which has emphasized the importance of personal interpretations about one's body characteristics. Body image relates to the mind's eye view people have of their appearance, their body, and how their appearance compares with others. Research on BID has stressed the multidimensional nature of body image.
including perceptual (i.e., accuracy regarding appearance-related appraisals), subjective (i.e., dissatisfaction, anxiety, or distress regarding one’s appearance), and social–behavioral facets (i.e., the social components of appearance such as discomfort in and avoidance of activities or situations that bring attention to appearance issues).

A major drawback in the relatively limited research literature related to BID, secondary to changes in appearance following a burn injury, has been that body image has not been measured directly. Rather, BID has been inferred from changes in appearance. Such studies have also been hindered by the lack of burn-injury-specific assessments for body image.

Much of the basic research on the development and assessment of BID has grown out of the eating disorders literature, where BID is thought to play a pivotal role (Slade, 1985). These measures focus primarily on the weight and size component of body image (Thompson, 1996) and are less relevant to disfigurement and deformity. More recently, several questionnaires have been developed that focus on global physical appearance (Alfonso & Allison, 1993) and on very specific aspects of body image, such as breast size (Thompson & Tantleff, 1992) or appearance of hands (Vamos, 1990). However, the basic assumption of these measures is that an individual’s appearance is relatively normal. No published measures have been specifically designed to be used in populations with disfigurements or deformities. As a result, published norms are inapplicable. Similarly, body-image measures designed specifically to measure body-image satisfaction of burn survivors have not been published. In order to meet this need, we have developed the Satisfaction With Appearance (SWAP) Scale. The SWAP was designed to measure both subjective and social–behavioral aspects of body image. This article introduces the SWAP, outlines its psychometric properties, and describes its convergent and discriminant validity with other measures of interest in this population.

Method

Participants

The participants were 165 adult burn patients (121 men and 44 women) with a mean age of 41.5 years (SD = 14.7), requiring hospitalization in the Baltimore Regional Burn Center. The sample was 65% European American, 32% African American, and 3% other. The mean number of years of education was 11.68 (SD = 2.28). The TBSA of the burn (i.e., burn size) ranged from 1% to 77%. Average TBSA was 13% (SD = 12.72), which is close to the national average for TBSA from regional burn centers (Feller, Tholen, & Cornell, 1979). The average size of the full thickness burn component (i.e., third-degree burns) for the sample was 4% (SD = 8.0).

Instruments

A number of instruments were administered to participants in order to test convergent and discriminant validity. Each participant completed the assessment instruments listed below.

Satisfaction With Appearance Scale. The SWAP was originally designed as a 15-item questionnaire developed by Robert Roca, Robert Spence, and James A. Fauerbach, to provide a standardized method for measuring body-image satisfaction among burn patients (see Appendix for final version). The SWAP was designed to measure the two primary components of body image outlined in the body-image literature (Heinberg, 1996), subjective satisfaction with appearance and social–behavioral impact of burn scars. Six items (items 1–3 and 12–14) were adapted from the Burn Specific Health Scale (Blades, Mellis, & Munster, 1982; Munster, Fauerbach, & Lawrence, 1996; Munster, Horowitz, & Tudahl, 1987), and the remaining items were selected on the basis of face validity by a team of clinicians in the psychological care of burn survivors. To ensure content validity, 10 experts at other treatment centers (5 body-image specialists and 5 burn specialists) and five burn survivors were solicited to review the relevance and representativeness of the SWAP items. Although suggestions were made to make minor revisions in items, all experts agreed that the SWAP adequately represents the domain of body image among burn patients.

On the SWAP, patients are asked to rate the degree to which each item accurately describes their thoughts and feelings about their appearance since being injured. Patients make their ratings on a 7-point scale ranging from 1 (strongly disagree) to 7 (strongly agree). The total SWAP score is calculated by subtracting 1 from each of the items (in order to anchor each item at 0) and then totaling the items. Questions 4–11 are reverse scored. Thus, high scores indicate greater dissatisfaction with appearance and poorer body image.

Davidson Trauma Scale. The Davidson Trauma Scale (DTS; Davidson et al., 1997; Zlotmick, Davidson, Shea, & Perelstein, 1996) is a 17-item instrument in which patients rate both the frequency and severity of all the posttraumatic stress symptoms listed in the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 1994). Patients make their ratings on a five-alternative forced-choice format with frequency ranging from 0 (not at all) to 4 (every day) and severity ranging from 0 (not at all distressing) to 4 (extremely distressing). The DTS has proved to be both a reliable and valid measure of posttraumatic stress disorder (PTSD) symptoms among survivors of burns (Lawrence, Fauerbach, & Munster, 1997), childhood sexual abuse, (Zlotmick et al., 1996) rape, and combat and natural disasters (Davidson et al., 1997).

Beck Anxiety Inventory. The Beck Anxiety Inventory (BAI; Beck, Epstein, Brown, & Steer, 1988) has 21 items measuring physiological, affective, and cognitive anxiety symptoms. Rates make their ratings on 4-point forced-choice scales ranging from 0 (not at all) to 3 (severely—I could barely stand it). The BAI is a widely used measure of general anxiety symptoms and has been shown to have solid psychometric properties in a number of studies (e.g., Beck et al., 1988; Steer, Ranieri, Beck, & Clark, 1992).

Beck Depression Inventory. The Beck Depression Inventory (BDI; Beck, Ward, Mendelson, Mock, & Erbaugh, 1961) is a 21-item measure; each item requires individuals to endorse one of a series of four statements that best describes his or her subjective experience. The four statements of each item reflect progressively more severe symptomatology. The BDI was developed to measure severity of symptoms of depression as operationally defined by alterations in mood, a negative self-concept associated with self-devaluation and self-blame, self-punitive wishes, vegetative symptoms, and alterations in activity level. The BDI is frequently used in psychiatric and general medical populations. In nonpsychiatric populations, the mean coefficient alpha is .81 (Beck, Steer, et al., 1988).

SF–36 Health Survey. The SF–36 Health Survey (SF–36; Ware, Snow, Kosinski, & Gandek, 1993) is a 36-item, eight-subscale, measure of quality of life. The eight SF–36 subscales measure four aspects of physical and mental health, respectively. The physical subscales are Physical Functioning (limitation in physical activities because of health), Role Physical (problems with work and daily activities in the past week because of physical health), Bodily Pain (serious pain), and General Health (evaluation of physical health and likelihood of improvement). The emotional subscales are Vitality (energy level), Social Functioning (interference in social activities because of physical and emotional health problems), Role Emotional (problems with work and daily activities...
because of emotional problems), and Mental Health (anxiety and depression). High scores on the SF-36 indicate greater satisfaction and healthy functioning; low scores indicate poorer satisfaction and functioning. The SF-36 is presently the most widely used measure of general health-related quality of life in medical settings and has excellent psychometric properties (Ware et al., 1993).

Physical Appearance State and Trait Anxiety Scale. The Physical Appearance State and Trait Anxiety Scale (PASTAS; Reed, Thompson, Brannick, & Sacco, 1991) is a 19-item questionnaire on which the participant is asked to rate "how anxious, tense, or nervous you feel about your body or specific parts of your body." Ratings are made on a 5-point scale ranging from 0 (not at all) to 4 (exceptionally so). Internal consistencies for this scale have been found to be quite high (alphas ranges from .82 to .88). The PASTAS demonstrates adequate convergent validity with other measures of BID and divergent validity with other measures of psychological distress (Reed et al., 1991). The trait version is designed as a measure of general or characterological body-image anxiety, and the state version assesses current or immediate level of anxiety. The state version was used in the present study because the instructional set is more consistent with that of the SWAP and more likely to reflect changes since incurring a burn injury.

Procedure

All participants were administered the SWAP, DTS, BDI, BAI, and the SF-36 at their first follow-up appointment after being discharged from the Baltimore Regional Burn Center approximately 1-week postdischarge. The initial assessment package was developed as part of a larger study investigating patterns of adjustment to acute burn injury. The PASTAS was added to the assessment package at a later date in order to evaluate convergent validity of the SWAP. Consequently, only 103 of the participants completed the PASTAS. In addition, in order to demonstrate the test-retest reliability of the SWAP, 84 of the participants were given the SWAP 2 months following the initial administration. The assessment package was administered by a trained clinical assistant.

Results

Preliminary Analyses and Item Retention

Of the original SWAP items, 14 of 15 were retained in the final version. One item, "My appearance makes other people uncomfortable," was dropped from the instrument because it did not load distinctly on any of the factors derived in the exploratory factor analysis (see below). In the results presented below, this item was deleted from the analyses. All 14 of the remaining items had relatively high item-total scale correlations, the lowest of which was .31. In addition, in the principal-components analysis, all items had acceptably high factor loadings on the first unrotated factor. Clark and Watson (1995) pointed out that loadings on the first unrotated factor "can be viewed as a direct measure of the common construct defined by the item pool" (p. 317) and suggested that items below .35 should be considered for removal from the scale. The mean factor loading on the first unrotated factor was .60 (SD = .11) with a range from .36 to .75. The SWAP generated an adequate distribution of scores. The distribution was positively skewed ($M = 17.0, Mdn = 12, mode = 0, SD = 15.3$), which was expected given that SWAP is a measure of distress.

Internal Consistency and Test–Retest Reliability

The reliability of the SWAP was examined by using Cronbach's (1951) coefficient alpha (ρ_n), the mean interitem correlation (r_{ii}), the item-with-total scale correlations corrected for part-whole redundancy (r_{it}), and test–retest reliability (r_{rt}). The SWAP demonstrated a high level of internal consistency with an ρ_n of .87. The mean interitem correlation was adequate ($r_{ij} = .32$), falling within the range recommended by Clark and Watson (1995) for a narrow construct. The item–total scale correlation coefficients were relatively high, with the mean item–total correlation equaling .53 (SD = .1) and the lowest item–total correlation equaling .31. The test–retest reliability was examined in a subsample of 84 participants who were retested approximately 2 months after the initial assessment ($r_{rt} = .59$).

SWAP Factor Structure

An exploratory factor analysis was conducted because we considered the hypothesized two-factor structure (i.e., subjective satisfaction and social–behavioral impact) of the SWAP speculative, based on research with populations other than burn survivors. Moreover, recently published guidelines for psychometric instrument development recommended the use of exploratory analysis in the early stages of test development (Clark & Watson, 1995; Floyd & Widaman, 1995). In particular, Floyd and Widaman (1995) recommended that a principal factor analysis with the least square extraction method and a varimax rotation be used in developing new psychometric instruments. Doing so with the SWAP, the resulting factor solution using the Statistical Package for the Social Sciences (SPSS, 1993) for Windows warned that "one or more communality estimates greater than 1.0 were encountered during iterations." Consequently, a principal-components analysis (as recommended by Stevens, 1992) was also computed. (A principal-components analysis sets communalities equal to 1.) Both analyses produced almost identical factor solutions.

The principal-components analysis using a varimax rotation is presented here. Setting an eigenvalue greater than 1.00 as the criterion for retaining components, the principal-components analysis yielded four interpretable components with eigenvalues lambda (λ) of 5.30, 1.51, 1.40, and 1.10, accounting for 66% of the total variance (see Table 1). More factors than originally hypothesized by the test developers were generated; however, these additional two factors were easily interpretable. Factor 1 was made up of items assessing subjective satisfaction with appearance with an emphasis on facial features. Factor 2 consisted of questions regarding satisfaction with nonfacial features (i.e., hands, arms, and legs). Factor 3 included items measuring social discomfort due to appearance. Factor 4 was made up of items measuring social impact of the SWAP. It was hypothesized that the SWAP would correlate with the other measures in the following way. The SWAP would have
Appearance Scale (SWAP)

Rotated (Varimax) Factor Loadings of Satisfaction With Appearance Scale (SWAP)

<table>
<thead>
<tr>
<th>SWAP items</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Description</td>
</tr>
<tr>
<td>4</td>
<td>Overall appearance</td>
</tr>
<tr>
<td>5</td>
<td>Scalp</td>
</tr>
<tr>
<td>6</td>
<td>Face</td>
</tr>
<tr>
<td>7</td>
<td>Neck</td>
</tr>
<tr>
<td>8</td>
<td>Hands</td>
</tr>
<tr>
<td>9</td>
<td>Arms</td>
</tr>
<tr>
<td>10</td>
<td>Legs</td>
</tr>
<tr>
<td>11</td>
<td>Chest</td>
</tr>
<tr>
<td>12</td>
<td>Social discomfort—family</td>
</tr>
<tr>
<td>13</td>
<td>Social discomfort—friends</td>
</tr>
<tr>
<td>14</td>
<td>Interference with strangers</td>
</tr>
<tr>
<td>15</td>
<td>Relationships</td>
</tr>
<tr>
<td>16</td>
<td>Unattractive to others</td>
</tr>
<tr>
<td>17</td>
<td>Others don’t want to touch me</td>
</tr>
</tbody>
</table>

Eigenvalues

| | 5.30 | 1.50 | 1.40 | 1.10 |

Variance (%)

| | 37.80 | 10.80 | 9.70 | 7.80 |

Note. Values >.45 are in boldface type.

The highest correlation with the PASTAS, a measure of body image. However, the SWAP differs from the PASTAS in that it asks questions regarding perceived social impact and social discomfort specifically due to being burned; the PASTAS only assesses anxiety and discomfort about specific body sites. Thus, it was postulated that the correlation coefficient would be significant but not so high as to suggest they are measuring the exact same construct. Next, it was predicted that the SWAP would have a moderately high positive correlation with the BDI and negative correlation with the SF-36 Mental Health and SF-36 Vitality subscales, both of which have a depression component. In other populations, measures of body-image dysphoria have had moderately high correlation coefficients with depression measures and moderately low correlation with other measures of distress (Thompson, 1996). Thus, it was postulated that the SWAP would have a moderately low positive correlation with measures of other types of distress (e.g., DTS and BAI) and moderately low negative correlations with emotional functioning without a specific depression or social component (SF-36 Role Emotional). Because of its social discomfort and social impact component, the SWAP was predicted to have a modestly high negative correlation with the SF-36 Social Functioning subscale. In testing discriminant validity, the SWAP was hypothesized to have little or no relationship with measurements of physical functioning, including SF-36 Physical Functioning, SF-36 Bodily Pain, SF-36 Role Physical, and the SF-36 General Health.

Correlations of the SWAP with measures of body image, depression, general anxiety, PTSD, and quality of life indicate that it has good convergent–discriminant validity. The correlation coefficients of the SWAP total score with hypothesized convergent measures were PASTAS ($r = .63, p < .01$), BDI ($r = .51, p < .01$), DTS ($r = .37, p < .01$), BAI ($r = .30, p < .01$), SF-36 Role Emotional ($r = -.26, p < .01$), SF-36 Social Functioning ($r = -.40, p < .01$), SF-36 Vitality ($r = -.42, p < .01$), and SF-36 Mental Health ($r = -.43, p < .01$). The correlation coefficients of the SWAP total score with hypothesized divergent measures were SF-36 Physical Functioning ($r = -.03, ns$), SF-36 Bodily Pain ($r = .07, ns$), SF-36 Role Physical ($r = -.24, p < .01$), and SF-36 General Health ($r = -.35, p < .01$). To further investigate the expected significant relationship between the SWAP and SF-36 Role Physical and SF-36 General Health, partial correlations were completed, controlling for depression (BDI). Controlling for depression, the relationships between the SWAP and SF-36 Role Physical ($r = .05, ns$) and SF-36 General Health ($r = -.09, ns$) were no longer significant.

In a post hoc test of the criterion validity of Factor 1 (satisfaction with appearance with an emphasis on facial features) and Factor 2 (satisfaction with appendages and body), partial correlations were completed, correlating the percentages of surface area burned on the hands and face with Factor 1 and Factor 2. It was hypothesized that Factor 1 (facial features) would be correlated with the percentage of facial burns while controlling for percentage of hand burns, and Factor 2 (appendages and body) would be correlated with percentage of hand burns while controlling for percentage of face burns. Estimates of percentage of surface area burned were based on burn diagrams completed at intake by the resident or attending physician. It is to be noted that the estimate of TBSA is a crude estimate of the extent of burns and has historically been unreliable (Yeong et al., 1997). In partial correlations controlling for hand burns, Factor 1 was significantly correlated with percentage of facial burns ($r = .22, p < .01$), but Factor 2 was not ($r = .05, ns$). Conversely, in partial correlations controlling for the facial burns, Factor 2 was significantly correlated with percentage of hand burn ($r = .22, p < .01$) but Factor 1 was not ($r = .07, ns$). These correlations are likely lower than expected because of the imprecision of TBSA estimates made at intake and the completion of the SWAP 1 week following discharge. Moreover, the TBSA estimates do not take into account healing and other changes in the appearance of the burn site since the injury.

Discussion

This initial exploration of the SWAP’s psychometric properties suggests that it is both a reliable and valid instrument. The SWAP generated an adequate distribution of scores. Although positively skewed, this distribution is to be expected with a measure of distress. That is, the SWAP is designed to identify that relatively small percentage of the population who experience a significant negative change in body image following a burn injury. The internal consistency as estimated by Cronbach’s alpha was high. This suggests that the items on the questionnaire are homogeneous (i.e., that they are measuring the same concept). That the test–retest reliability was relatively low ($r = .59$) was likely due to the long time period between tests, and appraisals of the burn sites and the permanence of scarring may have changed because of scar maturation and healing. Evidence
that the SWAP's low test–retest reliability is attributable to the long time period between administrations is provided by comparing the SWAP's test–retest reliability coefficient with the other psychometric instruments administered at the same time periods (DTS, $r_{t} = .64$; BDI, $r_{t} = .62$; BAI, $r_{t} = .54$; SF–36 Physical Functioning, $r_{t} = .54$; SF–36 Mental Health, $r_{t} = .47$).

Although the factor analysis did not yield the two-factor structure hypothesized by its developers, it was evident that the two originally postulated factors were included in the obtained factor structure, and the two other factors were easily interpretable. Factors 1 and 2 (facial features and appendages appearance) both addressed the subjective component of body image. Factors 3 and 4 (social discomfort and perceived social impact) related to the behavioral–social component of body image. Although the SWAP adequately evaluates these dimensions of body image, a third feature of body image (i.e., perceptual aspects) is not examined. However, this aspect has been criticized because it does not correlate highly with subjective levels of dissatisfaction (Allabe & Thompson, 1992) and because it is affected by a number of factors such as instructional set (Thompson & Dolce, 1989).

The SWAP also evidenced good convergent–discriminant validity. When compared with previously validated instruments, the pattern of correlations was very similar to that hypothesized. The SWAP had a relatively high correlation with a more general measure of body-image anxiety, the PASTAS. Although the PASTAS also assesses distress associated with specific body sites, the SWAP assessed the additional aspect of social and behavioral facets to body image and is specific to a disfigured population. As would be expected on the basis of the documented relationship between poor body image and depression (Hesse-Biber, Clayton-Mathews, & Downey, 1988), the SWAP had a moderately high positive correlation with the BDI and negative correlations with the SF–36 Mental Health and Vitality subscales. In addition, it had a moderately high negative correlation with SF–36 Social Functioning. It had a relatively low correlation with measures of PTSD and anxiety likely sharing a common distress component. In a test of discriminant validity, the SWAP was not related to measures of either physical functioning or bodily pain. Somewhat surprisingly, the SWAP had a significant negative correlation with the SF–36 General Health subscale and the SF–36 Role Physical. However, when partial correlations controlling for depression were completed, these correlations were no longer significant. In addition, in post hoc analyses, partial correlations controlling for percentage of hand burns, the facial feature factor was significantly correlated with percentage of facial burns, but the appendages and body factor was not. On the other hand, in partial correlations controlling for the facial burns, the appendages and body factor was significantly correlated with percentage of hand burn, but the facial factor was not.

This initial evaluation of the SWAP suggests that it is a reliable and valid measure that can assist researchers and clinicians in identifying burn survivors who have developed a negative body image because of the disfigurement caused by their burns. Other notable assets of the SWAP include its brevity, specificity, and ease of administration. In future research, the SWAP can be used to test hypotheses about how body image mediates the relationship between burn scarring, emotional distress, and avoidance behavior, as well as between burn scarring, body image, and adjustment. In addition, with minor modifications, it could be used with other populations with disfigurement or for other survivors of traumatic injury. Clinically, the SWAP can be useful in helping to identify patients who could benefit from cognitive–behavioral therapy following a burn. In addition, repeated administration in conjunction with psychotherapy, physical rehabilitation methods, or reconstructive surgery interventions can aid clinicians in monitoring their patients’ improvements in body image over time.

References

Heinberg, L. J. (1996). Theories of body image: Perceptual, develop-
SATISFACTION WITH APPEARANCE SCALE

(Appendix follows)
Satisfaction With Appearance Scale

In each of the following statements, circle the most correct responses for you according to the following scale:

1 = strongly disagree
2 = disagree
3 = somewhat disagree
4 = neutral
5 = somewhat agree
6 = agree
7 = strongly agree

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>Because of changes in my appearance caused by my burn, I am</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>uncomfortable in the presence of my family.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>Because of changes in my appearance caused by my burn, I am</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>uncomfortable in the presence of my friends.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>Because of changes in my appearance caused by my burn, I am</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>uncomfortable in the presence of strangers.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>I am satisfied with my overall appearance.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>I am satisfied with the appearance of my scalp.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>I am satisfied with the appearance of my face.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>I am satisfied with the appearance of my neck.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>I am satisfied with the appearance of my hands.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>I am satisfied with the appearance of my arms.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>I am satisfied with the appearance of my legs.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>I am satisfied with the appearance of my chest.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>Changes in my appearance have interfered with my relationships.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>I feel that my burn is unattractive to others.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>I don’t think people would want to touch me.</td>
</tr>
</tbody>
</table>